Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Appl Biochem Biotechnol ; 194(12): 6386-6406, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1971833

ABSTRACT

In the year 2019-2020, the whole world witnessed the spread of a disease called COVID-19 caused by SARS-CoV-2. A number of effective drugs and vaccine has been formulated to combat this outbreak. For the development of anti-COVID-19 drugs, the main protease (Mpro) is considered a key target as it has rare mutations and plays a crucial role in the replication of the SARS CoV-2. In this study, a library of selected lichen compounds was prepared and used for virtual screening against SARS-CoV-2 Mpro using molecular docking, and several hits as potential inhibitors were identified. Remdesivir was used as a standard inhibitor of Mpro for its comparison with the identified hits. Twenty-six compounds were identified as potential hits against Mpro, and these were subjected to in silico ADMET property prediction, and the compounds having favorable properties were selected for further analysis. After manual inspection of their interaction with the binding pocket of Mpro and binding affinity score, four compounds, namely, variolaric acid, cryptostictinolide, gyrophoric acid, and usnic acid, were selected for molecular dynamics study to evaluate the stability of complex. The molecular dynamics results indicated that except cryptostictinolide, all the three compounds made a stable complex with Mpro throughout a 100-ns simulation time period. Among all, usnic acid seems to be more stable and effective against SARS-CoV-2 Mpro. In summary, our findings suggest that usnic acid, variolaric acid, and gyrophoric acid have potential to inhibit SARS-Cov-2 Mpro and act as a lead compounds for the development of antiviral drug candidates against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Lichens , Humans , SARS-CoV-2 , Lichens/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Ligands , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Cysteine Endopeptidases/chemistry
2.
Mol Divers ; 25(3): 1665-1677, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-617371

ABSTRACT

The outbreak of SARS-CoV-2 and deaths caused by it all over the world have imposed great concern on the scientific community to develop potential drugs to combat Coronavirus disease-19 (COVID-19). In this regard, lichen metabolites may offer a vast reservoir for the discovery of antiviral drug candidates. Therefore, to find novel compounds against COVID-19, we created a library of 412 lichen compounds and subjected to virtual screening against the SARS-CoV-2 Main protease (Mpro). All the ligands were virtually screened, and 27 compounds were found to have high affinity with Mpro. These compounds were assessed for drug-likeness analysis where two compounds were found to fit well for redocking studies. Molecular docking, drug-likeness, X-Score, and toxicity analysis resulting in two lichen compounds, Calycin and Rhizocarpic acid with Mpro-inhibiting activity. These compounds were finally subjected to molecular dynamics simulation to compare the dynamics behavior and stability of the Mpro after ligand binding. The binding energy was calculated by MM-PBSA method to determine the intermolecular protein-ligand interactions. Our results showed that two compounds; Calycin and Rhizocarpic acid had the binding free energy of - 42.42 kJ mol/1 and - 57.85 kJ mol/1 respectively as compared to reference X77 (- 91.78 kJ mol/1). We concluded that Calycin and Rhizocarpic acid show considerable structural and pharmacological properties and they can be used as hit compounds to develop potential antiviral agents against SARS-CoV-2. These lichen compounds may be a suitable candidate for further experimental analysis.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Lichens/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , Lichens/metabolism , Ligands , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protein Conformation , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL